Tag Archives: ISME Journal

Microbes can have reviving action on growing systems

Microbes Can Revive Soils

Microbes can improve soil health, soil quality, and the quality, yield, and growth of crops. Microorganisms are an important part of the food web and perhaps the most overlooked part of the food web.


Microbes can have reviving action on growing systems

From: Nature Farm

Using Microbes in our soils and agricultural systems have been subject to a variety of trials within New Zealand on everything from sheep and cattle farms to onion growing. They have been shown to have a reviving action on growing systems. They can improve soil quality, soil health, and the growth, yield and quality of crops. Many fertiliser companies are now offering microbes as part of their bio product range, ensuring that the soil is inoculated to perform at its absolute peak. It is imperative that we start to explore more sustainable options for our agriculture, pastoral and horticulture sectors as the demand for food around the world continues to grow. We believe microbes for an important part to ensuring the fertility of our soils for generations to come. What do these beneficial microbes do?

Agricultural production begins with photosynthesis – the conversion of solar energy into chemical form. It’s an amazing process, but not a particularly efficient one. Even rapid growing plants like corn and sugar cane only fix a maximum of six to seven percent of the sun’s energy. One way to increase the amount of energy fixed, is with photosynthetic bacteria and algae. These utilize wavelengths that green plants do not.

Photosynthetic or phototropic bacteria are independent self-supporting microbes. They use the energy of sunlight and soil heat to convert secretions from plant roots, organic matter and harmful gases into plant useful substances like amino acids, nucleic acids, sugars and other metabolites. These can all be absorbed directly into plants to promote plant growth and also increase other beneficial microorganisms. For example VAM fungi increase in the root zone in the presence of amino acids secreted by these bacteria. In turn the VAM fungi improve the plant’s absorption of soil phosphates. The VAM can live alongside Azotobacter and Rhizobium and increase the capacity of plants to fix Nitrogen.

Other important species are lactic acid bacteria and yeast. These produce lactic acid from the sugars and carbohydrates the photosynthetic bacteria and yeasts produce. This is a strong sterilizing compound and can suppress some disease inducing microorganisms and nematode populations. It also contributes to the fermentation and breakdown of the tough cellulose and lignin. Here’s our soil digestive processes getting a help along. Yeasts on the other hand have other uses. They produce hormones and enzymes that promote plant cell and root division. They use the amino acids and sugars secreted by the photosynthetic bacteria and plant roots and in turn give off substances which are good growing compounds for the Lactic acid bacteria. So all three species have a separate role to play, and help each other. They also have a symbiotic or mutually beneficial relationship with the roots of plants. So plants grow exceptionally well in soils dominated by these Microbes.

Bacteria and microbes live, reproduce and die, at enormous rates and in doing so release a constant stream of nutrients in plant available form. They collect nitrogen and other nutrients from the soil organic matter and mineral particles. They reproduce, so more microbes are collecting and converting nutrients. They die and release what they have collected in a form the plants can use. The plants grow better, assimilate more energy and provide more food for more microbes and so it goes on.

It’s a two way process. Living plants absorb energy from the sun, incorporate it with carbon dioxide from the atmosphere, water and nutrients they require from the soil. Then they release oxygen back to the atmosphere and carbon to the soil as carbohydrates, glucose and other carbon forms for the microbes to feed on. The size of this microbial population is governed by the inputs from the plants, the primary producers.

We can see the grass and trees growing on top of the ground. But scientists tell us that fifty percent of a plant’s primary production disappears underground to establish the root network and feed the microorganisms. That is what happens in a healthy natural system. It is a mutually beneficial relationship that has evolved over eons and led to the formation of our most fertile and well-structured soils. Even the timing is perfect. In most natural systems, the greatest microbial turnover and release of nutrients, coincides with the plant’s growth and its seasonal needs.

Understanding this helps us see the danger of farming systems and landuse activities that starve the soil of carbon matter. No carbon means no food for the microbes. No food for the microbes means no turnover of nutrients. No nutrients means no plant growth which means no carbon inputs and so it goes on into a downward spiral with loss of fertility, loss of structure, erosion and so on and on. So our effective microorganisms are only going to remain effective if we manage our pastures with them in mind too. That means not overstocking or baring paddocks. It means allowing pastures to develop enough leaf to do their photosynthesis number effectively and fix some carbon for all the other little greeblies further along the food chain.


Enhanced by Zemanta

Crop rotation and the role of microorganisms

Crop rotation has been used effectively  for centuries; however, this is the first article that I have seen that discusses the changes in the microorganisms in the soil as a result of the rotation.

It’s probably not surprising that the organisms changed. What surprised me was that with the wheat the soil microorganisms were mostly bacteria. When crops the crops were changes to oats or peas, there was a shift to soil fungi.

I’d expect to see more studies about the role of microorganisms in the soil in the future. As we move towards using less fertilizer and towards sustainable agricultural practices the role of microorganisms may well be the key feature.



Crop rotation and the role of microorganisms

Crop rotation has been used since ancient times to improve plant nutrition and to limit the spread of disease. A new study reveals this relates to enriching the soil with bacteria, fungi and protozoa.

Crop rotation is the practice of growing a series of different types of crops in the same area in sequential seasons. The practice of crop rotation gives various benefits to the soil, such as the replenishment of nitrogen.

In essence, the new research has demonstrated that changing the crop species massively changes the content of microbes in the soil, which in turn helps the plant to acquire nutrients, regulate growth and protect itself against pests and diseases, boosting yield. The location where this happens is called the rhizosphere. The rhizosphere is the narrow region of soil that is directly influenced by root secretions and associated soil microorganisms.

To show this an organic agricultural study was conducted. Soil was collected from a field near Norwich (in the U.K.) and planted with wheat, oats and peas. After growing wheat, the analysis of the soil showed that it remained largely unchanged and the microbes in it were mostly bacteria. However, growing oat and pea in the same soil caused a huge shift towards fungi.

To show this, extensive genetic testing was required because each gram of soil contains over 50,000 species of bacteria. The findings of the study could be used to develop plant varieties that encourage beneficial microbes in the soil.

The study was published in Nature’s The ISME Journal. The paper is titled “Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants.”

Read more: http://www.digitaljournal.com/article/355178#ixzz2aAkc91md


Enhanced by Zemanta